Noncommutative symmetric functions with matrix parameters ( extended abstract )
نویسندگان
چکیده
We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki. Résumé. Nous définissons de nouvelles familles de fonctions symétriques non-commutatives et de fonctions quasisymétriques, dépendant de deux matrices de paramètres, et plus généralement, de paramètres associés à des chemins dans un arbre binaire. Pour des spécialisations appropriées, on retrouve les familles à deux vecteurs de HivertLascoux-Thibon et les fonctions de Macdonald non-commutatives de Bergeron-Zabrocki.
منابع مشابه
Noncommutative symmetric functions with matrix parameters
Abstract. We define new families of noncommutative symmetric functions and quasi-symmetric functions depending on two matrices of parameters, and more generally on parameters associated with paths in a binary tree. Appropriate specializations of both matrices then give back the two-vector families of Hivert, Lascoux, and Thibon and the noncommutative Macdonald functions of Bergeron and Zabrocki.
متن کاملNoncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity and Hall Scalar Product
Abstract. This paper will introduce noncommutative analogs of monomial symmetric functions and fundamental noncommutative symmetric functions. The expansion of ribbon Schur functions in both of these basis is nonnegative. With these functions at hand, one can derive a noncommutative Cauchy identity as well as study a noncommutative scalar product implied by Cauchy identity. This scalar product ...
متن کاملNoncommutative symmetric functions and quasi-symmetric functions with two and more parameters
We define two-parameter families of noncommutative symmetric functions and quasi-symmetric functions, which appear to be the proper analogues of the Macdonald symmetric functions in these settings.
متن کاملNoncommutative Symmetric Functions and the Inversion Problem
Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...
متن کاملNoncommutative Symmtric Functions and the Inversion Problem
Abstract. Let K be any unital commutative Q-algebra and z = (z1, z2, · · · , zn) commutative or noncommutative variables. Let t be a formal central parameter and K[[t]]〈〈z〉〉 the formal power series algebra of z over K[[t]]. In [Z6], for each automorphism Ft(z) = z−Ht(z) of K[[t]]〈〈z〉〉 with Ht=0(z) = 0 and o(H(z)) ≥ 1, a NCS (noncommutative symmetric) system ([Z5]) ΩFt has been constructed. Cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012